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Theoretical and experimental investigations of the 
refiexion of normal shock waves with 

vibrational relaxation 
By N. H. JOHANNESEN, G. A. BIRD7 AND H. K. ZIENKIEWICZ 

Department of the Mechanics of Fluids, University of Manchester 
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The one-dimensional problem of shock-wave reflexion with relaxation is treated 
numerically by combining the shock-wave, characteristic, and Rayleigh-line 
equations. The theoretical results are compared with pressure and density 
measurements in CO,, and the agreement is found to be excellent. 

1. Introduction 
The majority of experimental determinations of vibrational relaxation times 

have been based on shock-tube studies of the relaxation region behind shock 
waves travelling into the gas at room temperature. The relaxation process is 
described by the simple equation 

dlT 
- = pCD(5- lT)) 
at 

where CT is the vibrational energy and 5 its equilibrium value, p the density, and 
0 = CD(T), the relaxation frequency, which is assumed to be a function of the 
translational temperature, T, only. Most experimenters have evaluated CD for the 
relaxation region as a whole and then ascribed it to some mean value of the 
temperature within the relaxation region. More detailed evaluations (Johannesen, 
Zienkiewicz, Blythe & Gerrard 1962; Zienkiewicz & Johannesen 1963) show that 
CD is not strictly a function of T only. This effect is small, however, and can be 
neglected in most engineering applications. 

It has tacitly been assumed by most investigators that the values of CD deter- 
mined from shock-wave experiments on gases at  room temperature before the 
shock could be used for the calculation of other types of flow pattern, in particular 
the reverse process of expansion, either steady or unsteady. 

Recent experiments by Hurle, Russo & Hall (1964) threw serious doubt on 
this assumption. They found values of @ more than an order of magnitude higher 
in expanding nozzle flows than in shock waves. This result has since been con- 
firmed by several investigators but questioned by others. An up-to-date survey 
will be published in the Proceedings of the 7th AGARD Colloquium on Recent 
Advances in Aerothermochemistry held at  Oslo in May 1966. There is obviously 
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an urgent need for more experimental work on different flows with relaxation to 
try to clarify the situation, and the present investigation was stimulated by this 
need. As it happens, the work did not throw much light on the actual values of the 
relaxation frequency but it does show up a number of features of considerable 
interest. 

The flow to be investigated must satisfy two requirements: it must lend itself 
to accurate experimentation as well as to accurate theoretical calculations. This, 
of course, severely limits the possibilities. The reflexion of a shock wave from the 
end wall of a constant-area tube has been investigated extensively by a number 
of workers. It is well known that the interaction between the reflected wave and 
the boundary layer is very severe, in particular for gases with low specific heat 
ratio such as CO,. Photographs showing such interactions have been taken in this 
department and published by Dyner (1966). It is obvious that the flow has been 
modified by the shock-wave boundary-layer interaction to an extent that makes 
any comparison with a one-dimensional theory very crude indeed. 

There is, however, a region in time and space for which the flow is truly one- 
dimensional. Immediately after the reflexion, disturbances originating at the 
corners travel towards the centre-line of the tube both along the reflected shock 
wave and in the region behind it. Until these disturbances, which are clearly 
visible in the monochromatic interferogram in figure 1, plate 1, reach the centre- 
line, the flow there is truly one-dimensional. This means that pressure records at  
the centre of the wall will correspond to one-dimensional flow for a certain time 
interval after the reflexion. 

An interferometer record will never be truly one-dimensional because it displays 
the integrated effects across the whole of the working section and disturbances 
similar to those shown on figure 1, plate 1, will be present near the glass windows. 
On figure 1 the disturbances are expansion waves originating at a narrow gap 
between the end wall and the roof and floor of the tube. However, in our parti- 
cular shock tube the working section is 2 in. x 8 in. with the longer dimension in 
the direction of the light path and the distortion of the record is sufiiciently small 
to be either negligible or to amount to only a small correction. 

It is therefore reasonable to assume that sufficiently accurate experimental 
results can be obtained. The theoretical calculations must be based on a charac- 
teristic network step-by-step procedure combined with the shock-wave and 
Rayleigh-line equations. Using the heat-transfer analogy (Johannesen 1961) in 
which the flow is treated as that of an ideal gas (the a-gas) with heat extraction 
equal to the transfer of energy into the vibrational mode, the formulation of the 
problem and the calculation procedure is straightforward in principle. 

It turns out that to obtain sufficient accuracy the number of steps involved and 
the number of machine instructions (of the order lo8) are so large that the calcula- 
tions can only be carried out in a reasonable time by the fastest computers 
available. In  our case the Manchester University Atlas computer was used. 

The calculations were first carried out for a general gas with vibrational 
relaxation and the general features of the flow are discussed in some detail. 

Then calculations were made for specific flows in CO, and comparisons made 
with pressure records obtained by Baganoff at  GALCIT and with our own inter- 
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ferometer records of density distributions. In  both cases the agreement between 
theory and experiment is remarkably good. 

The work does not throw much additional light on the controversy about the 
numerical values of the relaxation frequency. In  fact, it  is found that, for CO,, 
values of the relaxation frequency obtained from single shock waves do not only 
give an adequate description of the reflected shock-wave problem in their own 
temperature range but can be used when extrapolated to much higher tempera- 
tures than those obtained in single shock waves. 

2. Flow of a universal gas 
To investigate the general properties of the flow it is convenient to operate 

with what might be called a universal diatomic gas with vibration, but without 
dissociation. Phinney (1964) has shown that the available experimental results 
on the relaxation frequency for diatomic gases (with the exception of the recent 
nozzle data) collapse to a good degree of accuracy into a universal curve if 
the ratio of the relaxation frequency to its value at the characteristic temperature 
of vibration, is plotted against T/B. 

The first set of calculations were made for this universal gas using the harmonic 
oscillator expression for the vibrational energy. 

It is convenient to introduce non-dimensional variables. 6 is the obvious choice 
of a characteristic temperature. A characteristic velocity is then (RB)*, where R is 
the gas constant. The scale of the relaxation region in any flow will depend on 
a, which can be non-dimensionalized with respect to Qo, and on the pressure, 
which can be non-dimensionalized with respect to a reference pressure. In  the 
present case a natural choice is p, ,  the pressure ahead of the incoming shock. 
The non-dimensional (‘hatted’) variables are then defked by the following 

Here u is the particle velocity relative to the wall, a the frozen speed of sound, 
s the specific entropy of the a-gas, cv, the specific heat at  constant volume of the 
a-gas, and x and t the space and time co-ordinates, respectively. 

The characteristic equations for one-dimensional unsteady flow at constant 
area with heat transfer are given by Shapiro (1954, p. 976). His heat transfer 
term q is in our case equal to - Da/Dt and the equations become 
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A h  s - s1 

Phinney's expression for the relaxation time becomes in our notation 

6 = 9 exp [ - 7*394(i?-f - 111. 
The harmonic oscillator expression for the vibrational energy is 

6 = [exp (9-1) - 11-1. 

These equations are used to calculate the flow in region 3 (figure 2) behind the 
reflected shock wave. They must be matched to the standard shock-wave 
equations for the reflected shock wave and these themselves must be matched to 
the Rayleigh-line equations (Johannesen 1961) which describe the relaxation 
region behind the incoming shock. This region travels at  constant speed equal 
to that of the incoming shock and conditions are therefore given at any point in 
region 2 in the (x, t)-diagram between the incoming and reflected shock waves. 

FIGURE 2. (z, t)-diagram. 

The network in region 3 is based on the particle paths and one family of 
ordinary characteristics (the family with dxldt = l/(u + a)). For each new point 
in the network interpolation is carried out along the backward characteristic of 
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the other family. This particular choice of network combines the advantages of 
the Eulerian and Lagrangian formulations of the equations of motion. One 
remainsin the ( x ,  t)-diagram and therefore retains the advantages of easy physical 
interpretation. At the same time the calculations follow the behaviour of 
individual particles of fluid, an obvious advantage in the case of non-isentropic 
flow. 

A typical program was based on 100 network points along the reflected 
shock wave. The running time on the Atlas computer was 7min. This type of 
calculation gave sufficient accuracy near the point of reflexion but did not quite 
reach large enough values of x and t for equilibrium to have been established. 
The program output was given in the form of tables of 2,$, a,@, $ and B at 
the network points. The density can be found directly from the equation of state, 
which with our non-dimensional variables takes the simple form 

The output data can be plotted in two ways. The variation of the various 
quantities with time at  the end wall (2 = 0) can be plotted directly (figure 3). 
By interpolation values for a fixed value of t" can be plotted as functions of &, 

1 0 3  2 

FIGERE 3. Variations with t^ at $ = 0 for reflected shock wave in a universal 
diatomic gas with = 0.1 and ms = 6. 

giving the variation through a slug of gas as on figure 4. This interpolation was 
carried out on a desk machine, as it would have been very lengthy to program 
and taxed the memory of Atlas beyond its capacity. 
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We shall now discuss the two representations in detail with reference to 
figures 3 and 4 for a temperature in front of the incoming shock p ,  = 0.1 and 
frozen shock Mach number ms = 6. (We use m and M to indicate Mach numbers 
based on frozen and equilibrium sound speeds, respectively.) 

,. 
T,  = 0 1  7 1 1 ~  = 6 ?= 0.013 

\ 

103 D 
FIGURE 4. Variations with 2 at t^ = 0.013 for reflected shock wave in a universal 

diatomic gas with !fl = 0.1 and ms = 6. 

On the end wall the temperature starts off at its frozen/frozen value, falls 
rapidly to a minimum and then increases very gradually to its equilibrium value. 
Equilibrium has not quite been reached on the figure. The equilibrium value of 
the vibrational energy does of course show the same behaviour as the temperature. 
The actual energy in vibration starts off a t  the negligibly small value ahead of the 
incoming shock and then rapidly increases to the local equilibrium value. We 
notice that the time required for ( 8 - C )  to become negligibly small is much 
smaller than the time required to reach final equilibrium. There are therefore 
two time scales involved in the relaxation process behind the reflected wave. 

The density increases monotonically from its frozen/frozen value to final 
equilibrium. However, the pressure behaves in a rather unexpected manner. 
9 falls rapidly to  a minimum value, which occurs much earlier than the minimum 
in !?, and then increases monotonically to its equilibrium value. This behaviour 
of $3 was predicted by Baganoff (1965), who argued that under certain conditions 
the pressure corresponding to frozen transition through the incoming shock 
followed by very rapid adjustment behind the reflected shock was lower than 
both the frozen/frozen and equiIibrium/equiIibrium values. We shall return to 
this question in some detail later. 

Detailed inspection of our results confirms Baganoff’s finding that the time 
required for the pressure to reach equilibrium on the wall is governed by the 
relaxation time behind the incoming shock. He also noted that the pressure 
variation at the wall is quite large so that the pressure is a convenient quantity 
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to use for experimental observations. This is in contrast with the situation behind 
the incoming shock, where the pressure variation through the relaxation region 
is quite small. A comparison between experiment and theory for the pressure 
on the wall is given in 5 3. 

Turning now to figure 4, we first note that this corresponds to a time two- 
thirds of full scale on figure 3. This means that all properties at  the wall are close 
to their final equilibrium values and the situation is very similar to that at a very 
large time where one would expect a stationary entropy layer close to the wall and 
a relaxation region behind the reflected wave travelling with the speed of the 
wave and leaving a steadily growingintermediateregionwith constant properties. 

is everywhere directed towards the wall. 
The entropy layer at the wall leads to an increase in $and a marked decrease in @. 
Behind the reflected wave the variables behave as in the usual relaxation region 
behind a shock wave travelling into a uniform region. 

On figure 4 the density curve lends itself to direct experimental observation by 
means of interferometry and a comparison between theory and experiment is 
given in 9 4. 

We note that the particle velocity 

3. Comparison between theoretical and experimental pressure 
distributions 

The work described so far was carried out independently of the work by 
Baganoff now to be discussed. Contact was established with Baganoff, who has 
designed a fast-response pressure gauge (Baganoff 1964) and published a number 
of pressure records (Baganoff 1965). The latter paper also contains a detailed 
discussion of the expected shape of the pressure curve. He failed to  observe the 
dip in the pressure curve experimentally and therefore concluded that his 
theoretical argument suggesting such a dip was incorrect. 

The computation method outlined above for a universal diatomic gas with 
vibrational relaxation can easily be adapted to cope with a specific gas, diatomic 
or polyatomic. For carbon dioxide we select as reference temperature, 8, the 
characteristic temperature of the bending mode, 8, = 959 OK. The harmonic 
oscillator expression for the vibrational energy then becomes 

where 8, = 1920 OK and 8, = 3380 O K .  This expression was considered sufficiently 
accurate for our present purpose as it only differs from the values tabulated by 
Hilsenrath et al. (1955) by about 3 yo at the maximum temperature ( N 5000 O K )  

in the experiment. 
The CD values were obtained from the values given on figure 5 in the paper by 

Johannesen et al. (1962). First a mean point was chosen for each value of Nl and 
these points were then fitted by a smooth curve. The expression is 

h r  

CD = T exp [2-02 - 2.489-91 [ 1 - exp ( - 9-l)I-l. (21) 
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FIGURE 5. Wall-pressure variation for reflected shock wave in CO,  with TI = 300 O K ,  

pl = 1 mmHg and M s  = 5.98 (large time scale). 0, large steps. Baganoff run no. 648. 
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FIGURE 6. Wall-pressure variation for reflected shock wave in C 0 2  with T I  = 300 OK, 

p1 c 1 mmHg and 1 c f ~  = 5.98 (small time scale). x , small steps; 0, large steps. 
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This is only a curve-fit and no physical meaning should be given to the last term. 
This numerical expression was used through the whole temperature range, a very 
considerable extrapolation. 

Figure 5 shows a comparison between the theoretical and experimental 
pressure curve for a shock wave of Ms = 5.98 in CO, at initial pressure 1 mmHg.t 
The general agreement is remarkable. The theoretical results are shown as the 
actual calculated points. There is an indication of a very slight dip in the pressure 
curve. To investigate the region immediately after the reflexion in more detail 
the computation was repeated with a five times smaller step size and the results 
are shown together with those with larger steps on figure 6. The effect of step 
size on the accuracy is clearly demonstrated; it amounts to about 1 yo i n p  for the 
larger values oft. There is now no doubt about the presence of a minimum in the 
pressure curve but it is very shallow and occurs at less than 0-lpsec after the 
reflexion, so it is not surprising that it was not detected on the pressure record in 
figure 5. 

In  view of Baganoffs statement that his experimental results contradict his 
theoretical conclusion that there should be a dip in the pressure curve, an 
analytical expression was obtained for (8p/at)t=0, the initial pressure gradient at  
the wall. The derivation is given in the appendix and leads to 

where (23) 

and G and F are universal functions of m,, the a-gas Mach number behind the 
incoming shock wave relative to the wave. 

It is found that for the particular expression used for CO, the pressure gradient 
is negative if M, > 2 and positive if M, < 2 for a shock travelling into CO, at  
295 OK. 

It is worth noting that for lower Mach numbers it might be possible to obtain 
pressure records showing the dip. 

4. Comparison between experimental and theoretical density 

The instantaneous density distribution between the wall and the reflected 
shock wave was found for a number of shocks in CO,, using the interferometer 
technique described by Johannesen et al. (1962) and making due allowance far 
dispersion (Zienkiewicz, Johannesen & Gerrard 1963). The white light interfero- 
grams had central fringe patterns similar to the monochromatic pattern shown 
in figure 1, plate 1. The fringe shift measured was between region 2 and region 3 
(figure 2) and the absolute density in region 3 was found by assuming the density 
in region 2 to be the equilibrium density behind a shock travelling at the measured 
Mach number of the incident shock. Figures 7 and 8 show typical results and the 
agreement between theory and experiment is again remarkably good. 

distributions 

t We are grateful to Dr Baganoff for supplying the oscilloscope record. 
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For M, = 1.51 (figure 7) the experimental density curve is about 1 yo below 
the theoretical one. An estimate of the effect of the density reduction due to the 
expansion waves from the corner between the end wall of the shock tube and the 
glass windows showed this to be of order 1 yo, giving complete agreement with 
theory. This is considered to be fortuitous, as the overall accuracy of the measure- 
ments can hardly be claimed to be better than 1 %. 

On figure 8 (M, = 3.97) two additional effects are apparent. There is a slight 
distortion of the density curve in the region behind the reflected wave due to the 

i4 

-1.5 io -1.0 - 0.5 0 

x (cm) 

FIGURE 7. Density distribution for reflected shock wave in CO, with 
TI = 295 OK, p l  = 79.6 mmHg and MS = 1-51. 

shock-wave boundary-layer interaction on the windows. Close to the end wall 
there is a definite departure from the theory caused by the heat transfer to the 
end wall which is neglected in the theory. The departure was found to increase 
with time, as one would expect, the cooling at the wall leading to a gradual 
increase in density while the pressure remains nearly constant. 

Acknowledgements are made to M i  R. J. Hine for assisting with the experi- 
ments and to the Ministry of Aviation, who supported this work. 
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FIG~RE 8. Density distribution for reflected shock wave in CO, with 
TI = 295 O K ,  p1 = 1.53 mmHg and M s  = 3.97. 

Appendix. Gradients in the flow behind the reflected shock wave 
On figure A l ,  A is the point of reflexion which is chosen as origin of the 

co-ordinate system. BCD is a particle path and DE and DF are characteristics. 

FIGURE A 1. (2, +diagram. 
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Us is the speed of the incoming shock wave positive in the direction of the x-axis 
and U, is the speed of the reflected shock wave positive in the direction opposite 
to x. u, v, w are particle velocities relative to the wall, to the incoming shock, and 
to the reflected shock, respectively. Suffixes 1,2,  3 refer to conditions at A in the 
three regions shown on figure A 1. The small differences between values on the 
particle path and at the origin are written as differentials, e.g. 

du2 = u,-u~; dp3 =pD-p3. (A 1 )  

From the characteristic equations (12) and (13) using u, = u, = 0 and the 
obvious relation t ,  + t, = 2tD it  follows that 

PE +PF = 2PD- ( A  2) 

This shows that, to the first order, p is independent of x in region 3. This can also 
be seen from the equation of motion 

au au l a p  
-+u-+-- = o ,  at ax p a x  

which shows that at  the origin where azc/at = u = 0 we must have aplax = 0. 
We can therefore write the pressure gradient at the wall as 

(aP/W,=o = dP,/tD. (A 4) 

Using standard shock-wave relations one finds 

and 

where 

- m, @2] ,  
du2 -i- dUR 

4ya pamR[ a, "2 

dp3 = P3 -dpZ+- 
P2 Ya+l 

u2 f uR m, = ___ 
a2 

From the characteristic equations one obtains 

where r = ~(3-3~). (A 9) 

Eliminating du ,  and using (A4) gives an expression for (ap/at),=, containing 
differentials which can be found from the Rayleigh-line equations governing the 
flow in region 2. These are most conveniently expressed in terms of the Mach 
number m2 defined by 

rn, = v2/a2. ( A  10) 

The final expression is in the non-dimensional notation 
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and F(m,)= 
[m”2-tl[(y,-1)+2m~l[2y,-(y,- l)m;Ii2+2~,m22+(3~,+ W&-(Y,-l)mazl 

~(7, + 113 m;( 1 - 

Figure A 2  shows Qn,) and r3/r2 for CO, (using (20) and (21)) plotted against 
Ms for TI = 295 OK. It follows that for CO, 

16 - 

14 - 

12 - 

0 I I I I I 
1 2 3 4 5 6 

MS 
FIGURE A2. ra/I’, for shock waves in CO, with T, = 295 O K  and F(na2) 

as functions of Ms. 

(z) < o  for ~ , > 2 .  
1=0 

N.B. During the analysis it was found that the following simple relation holds 
for a reflected shock wave in an ideal gas: the Mach number of the flow in region 2 
relative to the incoming shock is the reciprocal of the Mach number of the flow in 
region 2 relative to the reflected shock. This simple relation seems to have 
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escaped most writers on the subject. Von Mises (1958) relegates it to a footnote 
on p. 217 of his book. It is of great practical use and means that reflected shock- 
wave calculations can be made simply by using standard tables for normal shock 
waves twice. 
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FIGURE 1. Monochromatic fringc pattern for reflected shock wave in CO, 
w i t h  T, = 295 "K, p l  = 79.6 mmHg and JIs = 1.50. 
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